6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое тайминги в оперативной памяти, какие лучше — ликбез в 4 разделах

Ее функционирование тесно связано с CPU и информационными носителями. Данные с жесткого диска или другого накопителя первоначально попадают в оперативную память и только после их обрабатывает ЦП.

Структура оперативки похожа на таблицу, где сперва выбирается строчка, а после — столбец. Она делится на банки — ячейки SDRAM. Например, современные варианты DDR4 отличаются от DDR3 удвоенным числом банков. За счет растет производительность. Быстрота DDR4 достигает 25,6 ГБ/c, при этом шина может функционировать на 3200 МГц.

Зависимость производительности в играх от частоты и таймингов оперативной памяти

Сегодня я попытаюсь разобраться, насколько важна производительность оперативной памяти для игрового ПК. Конечно, было бы прекрасно провести тестирование в 4х разрешениях в 20 играх и при 10 различных режимах памяти. Но подобное тестирование заняло бы у меня как минимум несколько месяцев, в течение которых все свободное время я посвящал бы тестам, и в итоге это тестирование никогда бы не было окончено. Поэтому осталось 5 режимов работы оперативной памяти, 7 игр и разрешение 1080p. Такое разрешение было выбрано, чтобы показать зависимость в условиях приближенных к реальным (хотя 1080p для GTX 1080 это даже маловато). Но не беспокойтесь, отдельные тесты в 720p тоже будут. Да еще какие!

реклама

Память я использую Geil Super Luce, которую подробно рассмотрел в предыдущей статье. Не самая лучшая память и не самый лучший выбор для тестов, но в свое оправдание могу сказать, что если взять более хорошую память, которая заведется на 2666 с меньшими таймингами, то само соотношение между памятью на разных частотах не изменится. Тем более, результаты явно покажут, что основные тайминги не есть самое главное для игровой производительности. Единственное, о чем жалею – невозможность проверить масштабируемость производительности при бОльших частотах памяти – выше 3400 моя память прыгнуть неспособна.

Перед проведением подробных тестов с замерами были проведены тесты записью видео и смонтированы в 2 ролика. В первом сравнивается производительность в следующих режимах 2133, 2666 XMP, 2666 optimized, 3200 optimized в разрешении 1080p в 9 играх.

Во втором сравниваются 2666 optimized и 3200 default в 720p

реклама

Именно в комментах к видео появилась идея с замерами 1% и 0.1%

реклама

Тест в каждой игре при каждом режиме памяти проводился 3 раза, результаты усреднялись. Если какой-то из результатов сильно отличался от остальных (в двух тестах 70-72, в третьем 60), его результаты отбрасывались, и тест проводился снова. Между каждым прогоном система перегружалась.

В первую очередь я отказался от частоты памяти 2133. Сегодня эта частота представляет лишь теоретический интерес. Все процессоры и матплаты поддерживают из коробки бОльшую частоту. А вот режимов с частотой 2666 будет 2 – стандартный XMP и с выжатыми таймингами. Частота 2666 интересна тем, что это максимальная частота для чипсетов, не поддерживающих разгон (на платформе Intel), и будет интересно посмотреть, на что способна память в таком режиме. Итак, память тестировалась в следующих режимах:

реклама

2666 XMP. Основные тайминги 16-18-18-36. Остальные тайминги Авто

2666 opt (Optimized). 12-16-16-28-1T, TRFC=280, TREFI=65535, остальные тайминги выставлены вручную (но не «добиты» до самых минимальных значений из-за недостаточности времени на тестирование стабильности).

3200 default. 15-19-19-34, tCWL=15, все остальные тайминги Авто.

3200 opt. 15-19-19-34-1T, TRFC=330, TREFI=65535, остальные тайминги выставлены вручную.

3400 opt. 16-20-20-34-1T, TRFC=350, TREFI=65535, остальные тайминги выставлены вручную.

Таблица с таймингами

Процессор во всех тестах Core i7 8700K на частоте 4,8 ГГц. Режим максимальной производительности включен как в Windows, так и в биос материнской платы.

Результаты в AIDA64 Memory Benchmark

2666 МГц очень сильно улучшает показатели после настройки таймингов и приближается к лидерам по времени задержки. Посмотрим, к чему это приведет в играх.

Тестовый стенд

ЦП: Core i7 8700K @ 4.8 GHz, северный мост @ 4.4 GHz

МП: Asus Z370-A, версия биос 0616

Кулер: Phanteks PH-TC14PE + Noctua NF-A15

ОЗУ: 2*8GB Geil Super Luce 2666

ВК: Zotac Geforce GTX 1080 AMP + Accelero Xtreme III @ 2000/10800

БП: Corsair RM650

Корпус: Fractal Design Define R5 + 3x bequiet Silent Wings 2 140 mm

SSD: 2x Crucial M4 128GB, Crucial MX300 525GB, Kingfast 250GB

ОС: Windows 10 x64 LTSB

Версия драйвера ВК: 398.11

Для теста преимущественно отобраны игры, в которые я играю и знаю, в каких локациях производительность наименее зависит от видеокарты. Замеры среднего фпс и 1% и 0.1% фпс производились Fraps. К сожалению, пришлось отказаться от тестирования в Rise of Tomb Raider, т.к. Fraps в данной игре не работал. Также если не использовался бенчмарк, то не делалось никаких «прогревочных» пробежек по траектории, чтобы исключить лаги. Именно эти лаги мы сейчас и ищем.

Список игр

Assassin’s Creed Origins. Разрешение 1080p, пресет Ultra High. Используется встроенный бенчмарк, т.к. в данную игру я не играл. Тест производительности в Fraps запускался и останавливался вручную.

Fallout 4. Разрешение 1080p, пресет Ultra. Казалось бы, старая игра на древнейшем движке, но в данной игре есть место, где фпс зависит только от производительности оперативной памяти – верхушка завода Корвега. Фпс замерялся в течение 20 секунд при неподвижности персонажа. Тут я приведу только средний фпс. Также проведено тестирование при входе в Diamond City (13 cекунд).

Far Cry 5. Разрешение 1080p, пресет Ultra. Используется встроенный бенчмарк. Тест производительности в Fraps запускался и останавливался вручную.

Grand Theft Auto 5. Используется встроенный бенчмарк. Изначально я хотел использовать поездку по городу, но так и не смог научиться быстро ездить без аварий (в отличие от Watch Dogs 2). Настройки смотрите на скриншотах. Игра сама предложила подобные настройки при старте. Тест производительности в Fraps запускался вручную на 116 секунд в момент запуска последнего теста (и охватывал весь последний тест).

Kingdom Come Deliverance. Разрешение 1080p, пресет Very High. Поездка на быстрой лошади от мельницы до Ратае и через центральную улицу Ратае в течение 50 секунд. В отличие от видеосравнения тестовый отрезок заканчивается почти сразу после выезда за границу города.

Witcher 3. Разрешение 1080p, пресет Ultra. Поездка на лошади через Новиград в течение 50 секунд. В отличие от видеосравнения тестовый отрезок заканчивается почти сразу после выезда за границу города.

Watch Dogs 2. Разрешение 1080p, пресет Ультра. Поездка по центральной улице на быстром авто (одинаковом для каждого прогона) в течение 45 секунд. В отличие от видеосравнения обратно я уже не возвращаюсь, т.е. еду по дороге в одну сторону.

Результаты

Assassin’s Creed Origins 1080p

Различия между режимами очень небольшие. 2666 opt быстрее 3200 def.

Fallout 4 1080p

Рассмотрим пока спуск в Diamond City

Разница между лучшим и худшим результатом (avg и 1%) около 15%. 2666 опять опережает 3200 def.

Far Cry 5 1080p

Очень маленькая разница по среднему фпс, но вполне ощутимая по 1 и 0.1%. 2666 без оптимизаций отстает от остальных режимов, которые в свою очередь почти не отличаются между собой

Grand Theft Auto 5 1080p

С результатами GTA5 все не так однозначно. Средний фпс от прогона к прогону почти не отличался, а вот 1% и особенно 0.1% плавали в весьма широких пределах.

Например, все тесты при 3200 opt сразу показали высокий результат, а все 3 прогона при 3400 — низкий. И что тут прикажете делать? Тестирование при 3400 я провел заново, и именно эти результаты вы видите на графике. Результаты первых 3 прогонов можете скачать в архиве. Порой возникают фризы при переходе камеры от самолета к джипу, но зачастую просто отличается количество машин и взрывов. В итоге я решил использовать максимальные результаты. И получилось так, что тестирование в 3400 пришлось проводить дважды, а в 2666 opt долго добивать третий результат.

Kingdom Come Deliverance 1080p

В последней версии 1.5 (update: уже доступна 1.6) игра избавилась от фризов и просадок фпс при беге по городу на своих двоих. Но если скакать во весь опор на лошади, то фпс все еще провисает, хотя и меньше, чем на релизной версии. 2666 opt оказался гораздо ближе к оптимизированным 3200 и 3400, чем к 3200 без оптимизаций.

Watch Dogs 2 1080p

Стоп! Самая требовательная к скорости оперативной памяти игра показала минимальную разницу? Не может того быть! Может, если учесть настройки. В 1080p на Ultra настройках GTX 1080 почти постоянно работает на пределе, потому и такая небольшая разница.

720p

Тестирование в 720p я провел не во всех играх. Тестировать в 720p Fallout 4 и GTA 5 нет никакого смысла – в них и при 1080p видеокарта не загружена (это видно на видео). В Kingdom Come Deliverance видеокарта бОльшую часть времени загружена на максимум, но в моменты просадок фпс загрузка GPU падает. Итак, в 720p я протестирую Assassin’s Creed Origins, Witcher 3 и Far Cry 5. Watch Dogs 2 и завод Корвега из Fallout 4 оставлю напоследок.

Assassin’s Creed Origins 720p

Разница между режимами в 720p немного больше, чем в 1080p, но вновь ничего выдающегося.

Witcher 3 720p

Средний фпс растет, но 1% и 0.1% падает… Тестировать в 3200 opt я не стал – всего 2,3% разницы между 3400 и 2666 делает этот тест бессмыссленным.

Far Cry 5 720p

Всего 2 режима, т.к. их результаты показывают бессмысленность остального тестирования. Всего 3-4% разницы между 2666 и 3400 (+27% или +733 МГц частоты!) в 720p.

Watch Dogs 2 720p custom settings

А теперь немного хардкора. Снижаем разрешение до 720p, включаем пресет Ультра, а потом снижаем тени на Высоко и выключаем «Туман Сан-Франциско» и «Тень объектов в свете фар».

Читать еще:  Популярные заработки. Вся страшная правда о заработке в интернете! Лучшие ресурсы для заработка на отзывах

Помимо основных 5 режимов тестируем в следующих:

2666 XMP + TRFC, TREFI. Режим 2666 XMP кроме TRFC=280, TREFI=65535

2666 12-16-28-1T. Основные тайминги настроены вручную, все остальные на Авто

2666 opt no TRFC, TREFI. 2666 opt кроме TRFC и TREFI на Авто

2666 opt, subtim=auto. Основные тайминги, TRFC, TREFI настроены вручную, все остальные тайминги на Авто

2666 opt, TREFI=auto. 2666 opt кроме TREFI на Авто.

2666 opt, TRFC=auto. 2666 opt кроме TRFC на Авто.

2666 opt cl=14. 2666 opt кроме cl=14

2666 opt CR=2T. 2666 opt кроме Command Rate=2T

3267 opt. Тайминги аналогичны 3200 opt. Можитель процессора 47, шина 102.1

Каждый тест выполнялся 2 раза.

Наконец-то реальная разница между различными режимами! 2666 opt на 13-14% быстрее 2666 XMP, а 3400 opt в свою очередь на 10-11% быстрее 2666 opt, а разница между 2666 XMP и 3400 opt составляет 25%. Но есть одно но. Подобная разница получилась в одной игре, в разрешении 720p, с немного сниженными настройками, при использовании Core i7 8700K на частоте 4,8 ГГц и Geforce GTX 1080. Хочется тут вставить видео со святым отцом из «Очень страшного кино»

Еще из интересного можно отметить, что 2666 со всеми настроенными таймингами, кроме TRFC+TREFI, равен режиму 2666 XMP с настроенными TRFC+TREFI.

Повышение TRFC c 280 до дефолтных 467 (для частоты 2666) на производительность по сути не влияет.

Настройка только TRFC+TREFI после активации XMP профиля уже ощутимо улучшает производительность.

Ну и напоследок тест на заводе Корвега в Fallout 4. Особенность данной точки, что фпс тут не зависит ни от видеокарты, ни от процессора, а только от производительности оперативной памяти. Тест проводился всего 1 раз ввиду высокой повторяемости результатов. Приведен средний фпс.

Здесь разница меньше, чем в WD2 – всего 13,5% между лучшим и худшим результатом. Сами результаты позволяют оценить влияние каждого параметра на производительность.

Заключение

Через пару дней после начала подробных тестов я подумал, что занимаюсь чем-то бесполезным, и все основные ответы уже есть в записанных ранее видео. В общем-то, так и вышло. 2666 МГц с оптимизированными таймингами в подавляющем большинстве случаев не сильно уступает 3200 и 3400 (также с настроенными таймингами) и всегда превосходит 3200 с дефолтными таймингами. Основную роль в этом играет тайминг TREFI, но и остальные далеко небесполезны.

Ощутимую разницу удалось получить лишь в игре Watch Dogs 2 в разрешении 720p с немного сниженными настройками графики. Можно, конечно, было бы сказать, что со временем таких игр станет больше, но с момента выхода WD2 прошло более полутора лет, и новые игры показывают куда меньшую зависимость от производительности памяти.

При этом я ни в коем случае не утверждаю, что 2666 хватит всем. Для получения хороших результатов при данной частоте нужно потратить немало времени на настройку таймингов, и далеко не все на это пойдут. При этом память на 3200 и 3400 МГц с настроенными таймингами все равно быстрее 2666 также с оптимизацией. Поэтому, сначала находим предел по частоте памяти, а только потом настраиваем тайминги. Но, если ваша материнская плата не поддерживает разгон памяти, то обязательно настраиваем тайминги на частоте 2666 — это серьезно повышает производительность.

Ссылка на архив со всеми результатами и скриншотами таймингов и результатов в AIDA64.

Про тайминги RAM: влияние на производительность систем?

Когда Intel выпустила двухканальные чипсеты i865PE/i875P вместе с процессорами Intel Pentium 4C, ситуация на рынке памяти изменилась навсегда. Теперь процессор Pentium 4 благодаря двухканальным контроллерам памяти не ограничен пропускной способностью, как это было в случае с серией i845. Такие одноканальные чипсеты, как тот же i845PE, могли обеспечить только половину от необходимой Pentium 4 пропускной способности. C появлением процессоров Pentium 4 с 800 МГц FSB у пользователей появилась возможность достичь высоких частот системной шины, а многие производители памяти пытались нажиться на ситуации, выпуская модули со все более высокими значениями частоты.

К сожалению, чтобы запустить память на той же скорости, что и FSB (или 1:1), почти всем высокоскоростным модулям DIMM пришлось использовать плохие тайминги, например, 3-4-4-8.

А между тем тайминги памяти играют ключевую роль для общей производительности системы. В 3D-приложениях не требуется высокая пропускная способность, однако требуется быстрое взаимодействие всех компонентов компьютера.

Немного о терминологии.

Когда мы говорим о таймингах памяти, то обычно имеем в виду о длительности ожидания системой готовности памяти для записи и чтения данных. Иначе говоря, вы приходите в ресторан и делаете заказ, ожидая его выполнение. Более быстрое исполнение (более низкие тайминги) означает более производительный компьютер (более успешный ресторан).

Самые низкие тайминги сегодня — это 2-2-2-5 и в JEDEC (официальная организация, занимающаяся стандартами памяти) считают, что современная память не может работать с цифрами 0 или 1.

Принято обозначать тайминги четырьмя цифрами — первая всегда означает CAS (Column Address Strobe) Latency — самый важный параметр. Далее RAS-to-CAS Delay (Row Address Strobe), RAS Precharge и ACT-to-Precharge Delay (самая большая цифра всегда).

При прочих равных условиях, планка DDR, работающая с таймингами 2-2-2-5 сделает компьютер ощутимо более производительной системой, чем DIMM с таймингами 3-4-4-8. Проблема выбора возникает, когда вы начинаете задумываться о выборе более медленной памяти (в плане тактовой частоты) с меньшими задержками (2-2-2-5) или памяти с более высокой тактовой частотой (имеет, как правило, более высокие задержки 3-4-4-8).

Почему производится быстрая память с медленными таймингами?

На любом высококонкурентном рынке при выпуске одним производителим нового продукта, другой производитель незамедлительно выпускает аналогичную новинку, иначе его продукцию называют устаревшей. И, как обычно, все упирается в деньги, а посему перед нами встает дилемма: купить более быструю память с медленным доступом или более медленную память с более быстрым доступом.

Получается, что более быстрая память вроде PC4000 DDR может при более медленных таймингах обеспечить более высокую пропускную способность для процессора (пропускная способность — объем даннных, который можно передать от одного устройства другому за единицу времени).

Большинство модулей DIMM, работающих при хороших таймингах, например, PC3200 и PC3500, работают на частоте меньшей, чем частота FSB. Получается, что процессор, нуждающийся в большей пропускной способности, не получает ее и вынужден простаивать в ожидании памяти. Наличие же большой пропускной способности означает быструю работу приложений, обрабатывающих большие объемы данных, таких как Photoshop и базы данных.

Другая точка зрения состоит в том, что модули PC3200 и 3500 могут обрабатывать большие объемы данных не из-за высокой частоты, а из-за быстрых таймингов, которые позволяют более эффективно передавать данные между процессором и памятью. Программы, не требующие большой пропускной способности будут работать быстрее, если данные между памятью и остальным железом будут передаваться быстрее — это игры и 3D-приложения.

Как мы тестировали

В процессе теста мы запускали тестовую систему на 250 МГц FSB. При использовании модулей Corsair TwinX-4000 память функционаировала в синхронном с FSB режиме и таймингами 3-4-4-8. При использовании модулей XMS3500 CAS2 память работала на частоте 200 МГц (5:4) с таймингами 2-2-2-5.

Шутки ради мы также запускали Corsair XMS3500 CAS2 на частоте 333 МГц (3:2) при таймингах 2-2-2-5.

Intel Pentium 4 2.4C

12 x 250 МГц = 3 ГГц



ATi Radeon 9800 Pro

2×512Мб Corsair TwinX-4000
2×512Мб Corsair XMS3500 CAS2

Panasonic 1.44Мб Floppy Drive

WindowsXP Build 2600
Intel INF 5.20.1002
Catalyst 3.7

Business Winstone 2002
Content Creation 2002
SiSoft Sandra 2004
PCMark2002
3DMark2001SE
AquaMark 3
Quake III Arena
UT2003

Технология HyperThreading была включена во всех случаях.

Winstone 2002, SiSoft Sandra, PCMark2002

Тест Content Creation Winstone 2002 — это синтетический бенчмарк, основанный на реальных приложениях, позволяющий измерить общую производительность ПК. Происходит посредством запуска 32-битных Windows-приложений для создания контента под Windows 98, Windows 2000, Windows Me, Windows XP

Business Winstone 2002 — это также тест, предназначенный для исследования общей производительности системы на основе самых продаваемых сегодня Windows-приложений.

Тестовая система
Железо:
Процессор:
Частота:
Мат. плата:
Чипсет:
Видеокарта:
Память:
Жесткий диск:20Гб WD 7200 RPM
CDROM:NEC 52x CD-ROM
Floppy:
Блок питания:PC Power
обеспечение
Бенчмарки

В тестах Winstone 2002 мы видим разные результаты. Content Creation показывает, что тайминги больше влияют на производительность, а Business Winstone, наоборот, что больше важна пропускная способность. Интересно, что при 333 МГц система не намного медленней, чем при других частотах.

Sandra разработана для тестирования теоретической производительности всей системы и отдельных компонентов. Числа, полученные при помощи этого теста, опять-таки являются теоретическими и могут не отражать реальную производительность. Однако, в любом случае более высокие показатели означают более высокую производительность.

Результаты теста неудивительны: самая быстрая память — это память с самой высокой пропускной способностью. Sandra не учитывает тайминги в процессе тестирования.

PCMark особым образом нагружает процссор, подсистему памяти, графическую подсистему, жесткие диски, GUI Windows XP. Является синтетическим бенчмарком.


3DMark2001, AquaMark3

Сочетая поддержку DirectX 8 с новой графикой, 3DMark продолжает оставаться замечательным бенчмарком для измерения общей производительности системы. 3Dmark 2001 SE был создан совместно с главными производителями 3D-видеокарт и производителями процессоров. Пакет демонстрирует производительность 3D-игр, используя игровые приложения, чтобы исследовать реальную производительность системы. Этот тест включает: DirectX8 Vertex Shaders, Pixel Shaders и Point Sprites, DOT3 и Environment Mapped Bump Mapping, поддержку полноэкранного антиалиасинга и компрессии текстур.

Из теста видно, что 3D игровые приложения требовательны к таймингам.

Aquamark 3 — мощная программа, которая позволяет получить информацию об игровой производительности комьпютерной системы. Так как бенчмарк интенсивно использует DirectX 9,8,7, то он адекватно отражает требования типичных игровых приложений 2003-2004 г.г.

И опять тайминги существенно влияют на производительность — победителем становится синхронный режим с наилучшими таймингами.

Quake III Arena, UT2003

Quake II Arena — шутер от первого лица, который произвел революцию в игровой индустрии. В игре используется множество источников света и имеются графические текстуры, которые могут нагрузить видеокарты и спустя 3 года, поставив на колени даже самую производительную комьпютерную систему.


Опять система показывает наилучшую производительность с памятью, работающей в соотношении 5:4 с самыми быстрыми таймингами.

Unreal Tournament 2003 использует новейший движок, который обеспечивает незабываемые впечатления от красивейшей графики и звука. UT 2003 использует активно вершинные и пиксельные шейдеры. Рекомендуется иметь видеокарту, поддерживающую как минимум DirectX 8, чтобы в полной мере насладиться игрой.


Опять видим похожую ситуацию и делаем вывод: если вы геймер, то используйте память с более быстрыми таймингами.

Пропускная способность очень важна для Intel Pentium 4, а дни одноканальных контроллеров i845PE уже безвозвратно канули в прошлое. Благодаря двухканальности i865PE/i875P производительность существенно удалось поднять. В среднем система, работающая на 400 МГц памяти (5:4) с быстрыми таймингами, оказывается на 2-3% быстрее, чем система с более быстрой частотой, но более медленными таймингами.

Для большинства этот факт, конечно, не сыграет роли, но вот для энтузиастов такое положение дел является существенным. На наш взгляд многие крупные производители модулей памяти боятся потерять прибыли, если не будут выпускать более быстрые модули памяти, но с плохими таймингами. Но не надо забывать о вышеупомянутых энтузиастах, так как они всегда предпочитают память с более быстрыми таймингами, а не с более высокой скоростью.

Таким образом, если вам необходима максимально быстрая игровая система, то необходимо покупать модули памяти DDR с самыми быстрыми таймингами (2-2-2-5).

И какое это значение имеет для моего компьютера?

Представьте себе, вы после давненько совершённой покупки ноутбука решили добавить ещё одну планку оперативной памяти к уже имеющейся. Среди всего прочего, ориентируясь по наклеенному лейблу или на основании программ-бенчмарков можно установить, что по характеристикам таймингов модуль попадает под категорию CL-9 (9-9-9-24):

То есть данный модуль доставит до ЦПУ информацию с задержкой 9 условных циклов: не самый быстрый, но и не самый плохой вариант. Таким образом, нет смысла зацикливаться на приобретении планки с более низкими показателями задержки (и, теоретически, более высокими характеристиками производительности). Например, как вы уже догадались, 4-4-4-8, 5-5-5-15 и 7-7-7-21, у которых количество циклов равно соответственно 4, 5 и 7.

первый модуль опережает второй почти на треть цикла

Как вы знаете по статье “Как выбрать оперативную память?“, параметры таймингов включают ещё одни важные значения:

  • CLCAS Latency – время, затрачиваемое на цикл “модуль получил командумодуль начал отвечать“. Именно этот условный период уходит на ответ процессору от модуля/модулей
  • tRCD – задержка RAS к CAS – время, затрачиваемое на активацию строчки (RAS) и столбца (CAS) – именно там данные в матрице и сохраняются (каждый модуль памяти организован по типу матрицы)
  • tRP – заполнение (Зарядка) RAS – время, затрачиваемое на прекращение доступа к одной строчке данных и начало доступа к следующей
  • tRAS – означает как долго придётся самой памяти ждать очередного доступа к самой себе
  • CMDCommand Rate – время, затрачиваемое на цикл “чип активированпервая команда получена (или чип готов к приёму команды)”. Иногда этот параметр опускается: он всегда составляет один или два цикла ( или ).

“Участие” некоторых из этих параметров в принципе подсчёта скорости работы оперативной памяти, можно также выразить в следующих рисунках:

Кроме того, время задержки до момента, когда планка начнёт отсылать данные, можно подсчитать самому. Здесь работает простая формула:

Время задержки (сек) = 1 / Частоту передачи (Гц)

Таким образом, из рисунка с CPUD можно высчитать, что модуль DDR 3, работающий с частотой 665-666 МГц (половина декларируемого производителем значения, т.е. 1333 МГц) будет выдавать примерно:

1 / 666 000 000 = 1,5 нсек (наносекунд)

периода полного цикла (время такта). А теперь считаем задержку для обоих вариантов, представленных в рисунках. При таймингах CL-9 модуль будет выдавать “тормоза” периодом 1,5 х 9 = 13,5 нсек, при CL-7 : 1,5 х 7 = 10,5 нсек.

Что можно добавить к рисункам? Из них видно, что чем ниже цикл зарядки RAS, тем быстрее будет работать и сам модуль. Таким образом, общее время с момента подачи команды на “зарядку” ячеек модуля и фактическое получение модулем памяти данных, высчитывается по простой формуле (все эти показатели утилиты типа CPU-Z должны выдавать):

tRP + tRCD + CL

Как видно из формулы, чем ниже каждый из указываемых параметров, тем быстрее будет ваша оперативная память работать.

Про ранги и виртуализацию в RAM

В продолжение рубрики «конспект админа» хотелось бы разобраться в нюансах технологий ОЗУ современного железа: в регистровой памяти, рангах, банках памяти и прочем. Подробнее коснемся надежности хранения данных в памяти и тех технологий, которые несчетное число раз на дню избавляют администраторов от печалей BSOD.

Старые песни про новые типы

Сегодня на рынке представлены, в основном, модули с памятью DDR SDRAM: DDR2, DDR3, DDR4. Разные поколения отличаются между собой рядом характеристик — в целом, каждое следующее поколение «быстрее, выше, сильнее», а для любознательных вот табличка:

Для подбора правильной памяти больший интерес представляют сами модули:

RDIMM — регистровая (буферизованная) память. Удобна для установки большого объема оперативной памяти по сравнению с небуферизованными модулями. Из минусов — более низкая производительность;

UDIMM (unregistered DRAM) — нерегистровая или небуферизованная память — это оперативная память, которая не содержит никаких буферов или регистров;

LRDIMM — эти модули обеспечивают более высокие скорости при большей емкости по сравнению с двухранговыми или четырехранговыми модулями RDIMM, за счёт использования дополнительных микросхем буфера памяти;

HDIMM (HyperCloud DIMM, HCDIMM) — модули с виртуальными рангами, которые имеют большую плотность и обеспечивают более высокую скорость работы. Например, 4 физических ранга в таких модулях могут быть представлены для контроллера как 2 виртуальных;

FBDIMM — полностью буферизованная DIMM с высокой надежностью, скоростью и плотностью размещения.

Попытка одновременно использовать эти типы может вызвать самые разные печальные последствия, вплоть до порчи материнской платы или самой памяти. Но возможно использование одного типа модулей с разными характеристиками, так как они обратно совместимы по тактовой частоте. Правда, итоговая частота работы подсистемы памяти будет ограничена возможностями самого медленного модуля или контроллера памяти.

Для всех типов памяти SDRAM есть общий набор базовых характеристик, влияющий на объем и производительность:

частота и режим работы;

Конечно, отличий на самом деле больше, но для сборки правильно работающей системы можно ограничиться этими.

Частота и режим работы

Понятно, что чем выше частота — тем выше общая производительность памяти. Но память все равно не будет работать быстрее, чем ей позволяет контроллер на материнской плате. Кроме того, все современные модули умеют работать в в многоканальном режиме, который увеличивает общую производительность до четырех раз.

Режимы работы можно условно разделить на четыре группы:

Single Mode — одноканальный или ассиметричный. Включается, когда в системе установлен только один модуль памяти или все модули отличаются друг от друга. Фактически, означает отсутствие многоканального доступа;

Dual Mode — двухканальный или симметричный. Слоты памяти группируются по каналам, в каждом из которых устанавливается одинаковый объем памяти. Это позволяет увеличить скорость работы на 5-10% в играх, и до 70% в тяжелых графических приложениях. Модули памяти необходимо устанавливать парами на разные каналы. Производители материнских плат обычно выделяют парные слоты одним цветом;

Triple Mode — трехканальный режим работы. Модули устанавливаются группами по три штуки — на каждый из трех каналов. Аналогично работают и последующие режимы: четырехканальные (quad-channel), восьмиканальные (8-channel memory) и т.п.

Flex Mode — позволяет увеличить производительность оперативной памяти при установке двух модулей различного объема, но с одинаковой частотой.

Для максимального быстродействия лучше устанавливать одинаковые модули с максимально возможной для системы частотой. При этом используйте установку парами или группами — в зависимости от доступного многоканального режима работы.

Ранги для памяти

Ранг (rank) — область памяти из нескольких чипов памяти в 64 бита (72 бита при наличии ECC, о чем поговорим позже). В зависимости от конструкции модуль может содержать один, два или четыре ранга.

Узнать этот параметр можно из маркировки на модуле памяти. Например уKingston число рангов легко вычислить по одной из трех букв в середине маркировки: S (Single — одногоранговая), D (Dual — двухранговая), Q (Quad — четырехранговая).

Пример полной расшифровки маркировки на модулях Kingston:

Серверные материнские платы ограничены суммарным числом рангов памяти, с которыми могут работать. Например, если максимально может быть установлено восемь рангов при уже установленных четырех двухранговых модулях, то в свободные слоты память добавить не получится.

Перед покупкой модулей есть смысл уточнить, какие типы памяти поддерживает процессор сервера. Например, Xeon E5/E5 v2 поддерживают одно-, двух- и четырехранговые регистровые модули DIMM (RDIMM), LRDIMM и не буферизированные ECC DIMM (ECC UDIMM) DDR3. А процессоры Xeon E5 v3 поддерживают одно- и двухранговые регистровые модули DIMM, а также LRDIMM DDR4.

Немного про скучные аббревиатуры таймингов

Тайминги или латентность памяти (CAS Latency, CL) — величина задержки в тактах от поступления команды до ее исполнения. Числа таймингов указывают параметры следующих операций:

CL (CAS Latency) — время, которое проходит между запросом процессора некоторых данных из памяти и моментом выдачи этих данных памятью;

tRCD (задержка от RAS до CAS) — время, которое должно пройти с момента обращения к строке матрицы (RAS) до обращения к столбцу матрицы (CAS) с нужными данными;

tRP (RAS Precharge) — интервал от закрытия доступа к одной строке матрицы, и до начала доступа к другой;

tRAS — пауза для возврата памяти в состояние ожидания следующего запроса;

CMD (Command Rate) — время от активации чипа памяти до обращения к ней с первой командой.

Разумеется, чем меньше тайминги — тем лучше для скорости. Но за низкую латентность придется заплатить тактовой частотой: чем ниже тайминги, тем меньше допустимая для памяти тактовая частота. Поэтому правильным выбором будет «золотая середина».

Существуют и специальные более дорогие модули с пометкой «Low Latency», которые могут работать на более высокой частоте при низких таймингах. При расширении памяти желательно подбирать модули с таймингами, аналогичными уже установленным.

RAID для оперативной памяти

Ошибки при хранении данных в оперативной памяти неизбежны. Они классифицируются как аппаратные отказы и нерегулярные ошибки (сбои). Память с контролем четности способна обнаружить ошибку, но не способна ее исправить.

Для коррекции нерегулярных ошибок применяется ECC-память, которая содержит дополнительную микросхему для обнаружения и исправления ошибок в отдельных битах.

Метод коррекции ошибок работает следующим образом:

При записи 64 бит данных в ячейку памяти происходит подсчет контрольной суммы, составляющей 8 бит.

Когда процессор считывает данные, то выполняется расчет контрольной суммы полученных данных и сравнение с исходным значением. Если суммы не совпадают — это ошибка.

Если ошибка однобитовая, то неправильный бит исправляется автоматически. Если двухбитовая — передается соответствующее сообщение для операционной системы.

Технология Advanced ECC способна исправлять многобитовые ошибки в одной микросхеме, и с ней возможно восстановление данных даже при отказе всего модуля DRAM.

Исправление ошибок нужно отдельно включить в BIOS

Большинство серверных модулей памяти являются регистровыми (буферизованными) — они содержат регистры контроля передачи данных.

Регистры также позволяют устанавливать большие объемы памяти, но из-за них образуются дополнительные задержки в работе. Дело в том, что каждое чтение и запись буферизуются в регистре на один такт, прежде чем попадут с шины памяти в чип DRAM, поэтому регистровая память оказывается медленнее не регистровой на один такт.

Все регистровые модули и память с полной буферизацией также поддерживают ECC, а вот обратное не всегда справедливо. Из соображений надежности для сервера лучше использовать регистровую память.

Многопроцессорные системы и память

Для правильной и быстрой работы нескольких процессоров, нужно каждому из них выделить свой банк памяти для доступа «напрямую». Об организации этих банков в конкретном сервере лучше почитать в документации, но общее правило такое: память распределяем между банками поровну и в каждый ставим модули одного типа.

Если пришлось поставить в сервер модули с меньшей частотой, чем требуется материнской плате — нужно включить в BIOS дополнительные циклы ожидания при работе процессора с памятью.

Для автоматического учета всех правил и рекомендаций по установке модулей можно использовать специальные утилиты от вендора. Например, у HP есть Online DDR4 (DDR3) Memory Configuration Tool.

Итого

Вместо пространственного заключения приведу общие рекомендации по выбору памяти:

Для многопроцессорных серверов HP рекомендуется использовать только регистровую память c функцией коррекции ошибок (ECC RDIMM), а для однопроцессорных — небуферизированную с ECC (UDIMM). Планки UDIMM для серверов HP лучше выбирать от этого же производителя, чтобы избежать самопроизвольных перезагрузок.

В случае с RDIMM лучше выбирать одно- и двухранговые модули (1rx4, 2rx4). Для оптимальной производительности используйте двухранговые модули памяти в конфигурациях 1 или 2 DIMM на канал. Создание конфигурации из 3 DIMM с установкой модулей в третий банк памяти значительно снижает производительность.

Из тех же соображений максимальной скорости желательно избегать использования четырехранговой памяти RDIMM, поскольку она снижает частоту до 1066 МГц в конфигурациях с одним модулем на канал, и до 800 МГц — в конфигурациях с двумя модулями на канал. Справедливо для серверов на базе Intel Xeon 5600 и Xeon E5/E5 v2.

Список короткий, но здесь все самое необходимое и наименее очевидное. Конечно же, старый как мир принцип RTFM никто не отменял.

Насколько частота влияет на производительность в играх?

Может ли частота оперативной памяти существенно повлиять на частоту кадров (FPS) в играх?

Если речь о частоте видеопамяти – да, конечно. Ведь именно она напрямую влияет на производительность.

Если говорить об оперативной памяти компьютера – нет, что подтверждается многими тестами. Большинству игр не требуется использование RAM.

На графике показан один из примеров. Чуть ниже видео со сравнением 3-х частот. Если вы собираете игровой компьютер — это не тот параметр, на который нужно обращать внимание.

Сравнение производительности в играх: 3000 Мгц, 3200 Мгц, 3600 Мгц

Для вычисления таймингов самостоятельно можно использовать довольно простую формулу:

Время задержки (сек) = 1 / Частота передачи (Гц)

Таким образом, из скриншота с CPU-Z можно высчитать, что модуль DDR3, работающий с частотой 400 МГц (половина декларируемого производителем значения, т.е. 800 МГц) будет выдавать примерно:

1 / 400 000 000 = 2,5 нсек (наносекунд)

периода полного цикла (время такта). А теперь считаем задержку для обоих вариантов, представленных на рисунках. При таймингах CL-11 модуль будет выдавать задержки периодом 2,5 х 11 = 27,5 нсек. В CPU-Z это значение показано как 28. Как видно из формулы, чем ниже каждый из указываемых параметров, тем быстрее будет работать ваша оперативная память.

XMP не будет делать всё за вас

Вы можете купить планку памяти от G.Skill, Crucial или Corsair, но эти компании не производят сами чипы DDR4, лежащие в основе RAM. Они покупают чипы у фабрик, изготавливающих полупроводниковые устройства, что означает, что вся память на рынке происходит из небольшого количества главных точек: Samsung, Micron и Hynix.

Кроме того, модные планки памяти, которые помечаются как 4000 МГц и выше, и у которых заявлена низкая CAS-латентность, на самом деле не отличаются от «медленной» памяти, стоящей в два раза дешевле. Оба варианта используют чипы памяти Samsung B-die DDR4, просто у одного из них золотистый радиатор, цветные огоньки и украшенный стразами верх (да, это реально можно купить).

Приходя с фабрики, чипы подвергаются проверкам при помощи процесса под названием «биннинг». И не вся память показывает наилучшие результаты. Некоторые чипы хорошо ведут себя на частотах 4000 МГц и выше с низкой CAS-латентностью, а некоторые не работают выше 3000 МГц. Это называется кремниевой лотереей, и именно она повышает цену на высокоскоростные планки.

Но заявленная скорость не обязательно ограничивает реальный потенциал вашей памяти. Скорость XMP – это просто рейтинг, гарантирующий, что планка памяти будет работать на указанной скорости 100% времени. Тут играют большую роль маркетинг и сегментация продуктов, чем ограничения RAM; никто не запрещает вашей памяти работать за пределами спецификаций, просто включить XMP легче, чем разгонять память самому.

Также XMP ограничен определённым набором таймингов. Согласно представителям Kingston, в памяти «настраиваются только ’основные’ тайминги (CL,RCD,RP,RAS)», и поскольку у SPD есть ограниченное место для хранения профилей XMP, всё остальное решает материнская плата, которая не всегда делает верный выбор. В моём случае материнка Asus в режиме «авто» установила очень странные значения некоторых таймингов. Моя планка памяти отказалась работать по умолчанию, пока я не исправил эти тайминги вручную.

Кроме того, биннинг на фабрике жёстко задаёт диапазон напряжения, в котором должна работать память. К примеру, фабрика протестирует память с напряжением в 1,35 В, не будет продолжать тест, если память не покажет максимальных результатов, и даст ей метку «3200 МГц», под которую попадает большинство планок. Но что, если запустить память с напряжением в 1,375 В? А 1,39 В? Эти цифры еще очень далеки от опасных для DDR4 напряжений, но даже небольшой прирост напряжения может помочь значительно увеличить частоту памяти.

Основные характеристики оперативной памяти

При выборе оперативной памяти, нужно обязательно учитывать следующие характеристики:

    • тип памяти,
    • форм-фактор,
    • ключ модуля памяти,
    • объём модуля ОЗУ,
    • тактовая частота,
    • тайминг.

Тип памяти

Скорость чтения/записи важный показатель оперативной памяти, именно поэтому идёт постоянная борьба за производительность ОЗУ. Технологии не стоят на месте, периодически появляются новые стандарты оперативной памяти, как правило, превосходящие своих предшественников по скорости в 2 раза. Наибольшее распространение получила синхронная динамическая память с произвольным доступом (SDRAM), эволюционная линейка которой выглядит следующим образом: DDR, DDR2, DDR3, DDR4, DDR5.

Форм-фактор модуля памяти

Планки оперативной памяти имеют различный форм-фактор исполнения в зависимости от того, где будет эксплуатировать ОЗУ в ноутбуке или компьютере. Форм-фактор оперативной памяти для стационарных компьютеров именуется DIMM, а для ноутбуковSO-DIMM.

Ключ модуля оперативной памяти

Печатная плата (модуль/планка), на которой размещены чипы памяти, имеет специальный ключ (прорезь), в зависимости от типа SDRAM-памяти: DDR, DDR2, DDR3, DDR4, DDR5. Связано это с тем, что типы памяти не совместимы между собой.

Объём модуля памяти

Объём оперативной памяти, на ряду с характеристиками прочих комплектующих ПК, непосредственно влияет на производительность системы в целом. При достаточном объёме ОЗУ, операционная система реже задействует файл подкачки, что исключает лишние операции чтения/записи, которые проходят на более низких скоростях.

Объём одного модуля оперативной памяти, зависит от типа памяти.

Тип памятиОбъём модуля памяти
МинимальныйМаксимальный
DDR256 МБ1 ГБ
DDR 2512 МБ4 ГБ
DDR 31 ГБ16 ГБ
DDR 44 ГБ128 ГБ

Тактовая частота оперативной памяти

Параметр зависит от типа оперативной памяти: DDR, DDR 2, DDR 3, DDR 4, DDR 5. Чем выше тактовая частота, тем лучше. Обязательно стоит учитывать характеристики процессора, который должен поддерживать соответствующую тактовую частоту ОЗУ.

Обязательно стоит учитывать режим работы — одно- или двухканальный. Если процессор способен работать с максимальной частотой определённого типа памяти в одноканальном режиме, он может не поддерживать данную частоту в двухканальном режиме. При этом, система запустится и будет работать, но на более низкой частоте.

Стоит отметить тот факт, что оперативная память, независимо от типа, в процессе своей работы поддерживает весь диапазон тактовых частот, расположенных ниже своей максимальной частоты. К примеру, максимальная тактовая частота модуля памяти DDR 4 2400 МГц — ОЗУ может работать на следующих частотах: 2400, 2133, 1866, 1600.

Частота, на которой запустится оперативная память (без учёта разгона) зависит от характеристик процессора, чипсета материнской платы и установленной видеокарты. Если, какой-то из компонентов системы будет «тормозить», то память не запустится на пределе своих возможностей.

Тип памятиТактовая частота модуля памяти, МГц
МинимальнаяМаксимальная
DDR100350
DDR 2200600
DDR 38002400
DDR 416003200

Тайминг оперативной памяти

Тайминг или латентность — время задержки доступа к ячейкам памяти между операциями чтения/записи. Важный параметр оперативной памяти.

CAS Latency (CL) — Один из самых значимых показателей: именно он говорит, сколько времени в целом уходит на поиск необходимых данных после того, как ЦП попросит доступ на считывание. Чем меньше показатель CAS Latency, тем лучше.

RAS to CAS Delay (tRCD) — показатель демонстрирует время полного доступа к данным, то есть задержку, вызванную поиском нужного столбца и строки в двухмерной таблице. Чем меньше значение, тем выше быстродействие ОЗУ.

Row Precharge Delay (tRP) — ОЗУ — динамическая память, ее ячейки время от времени разряжаются и нуждаются в периодической перезарядке. По этой причине данные, которые содержатся в ней, обновляются. Это называется регенерацией ОЗУ. Таким образом, данный показатель в тактах отображает временной отрезок, проходящий между сигналом на зарядку — регенерацию ОЗУ — и разрешением на доступ к следующей строчке информации. Чем меньше этот параметр, тем быстрее работает память.

Activate to Precharge Delay (tRAS) — минимальное время активности строки, то есть минимальное время между активацией строки (ее открытием) и подачей команды на предзаряд (начало закрытия строки). Строка не может быть закрыта раньше этого времени. Высокий показатель данного параметра заметно сокращает производительность памяти, из-за того, что закрытие ячейки требует дополнительного времени, поэтому чем ниже значение tRAS, тем лучше.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector